

Name\_

## **Density of Solids Worksheet**

Student Data Table(s)

|        | Length (cm) | Width (cm) | Height (cm) | Volume (cm <sup>3</sup> ) | Mass (g) | Density (g/cm <sup>3</sup> ) |
|--------|-------------|------------|-------------|---------------------------|----------|------------------------------|
| Cube 1 |             |            |             |                           |          |                              |
| Cube 2 |             |            |             |                           |          |                              |
| Bar    |             |            |             |                           |          |                              |

## **Post-Lab Questions**

1. How do the densities of Cube 1, Cube 2 and the Bar compare?

- 2. From the data collected, are any of the three objects composed of the same material? How do you know this?
- 3. Use the density table below to identify what material each item is composed of.

| Density of Common Substances (at 20 °C) g/cm <sup>3</sup> |      |          |      |  |  |  |  |
|-----------------------------------------------------------|------|----------|------|--|--|--|--|
| Gold                                                      | 19.3 | Steel    | 7.87 |  |  |  |  |
| Mercury                                                   | 13.6 | Aluminum | 2.70 |  |  |  |  |
| Lead                                                      | 11.4 | Cork     | 0.24 |  |  |  |  |
| Copper                                                    | 8.92 |          |      |  |  |  |  |

4. Once each object has been identified, use the following equation to determine the accuracy of your calculated density measurements. Use the equation list below.

Percent Error =  $\frac{| \text{Calculated Density} - \text{Actual Density} |}{\text{Actual Density}} \times 100 = \_$ 

5. What are some possible errors in your density calculations?